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In the present implicit leapfrog, advection and Hall-E
are centered only approximately.
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Velocity advance:

Newton-like step staggering-centered

Number density advance:

staggering-centered predict/correct if nl coefficient



For the magnetic advance, the time-averaged n is known.
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Temperature advances:

averaged p/c if B-dependentstagger (&p/c)

Magnetic advance:

Correct after B advance.

averagesNewton-likestagger



The discrepancies from nonlinear centering are small,
but they may affect nonlinear stability.

• The momentum-density advection and Hall terms are among the
hyperbolic parts of the system.

• Analysis for linear waves shows that these terms must be time-
centered for numerical stability.

V-advance: solution field is ΔV, and nonlinearly centered advection is
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B-advance: solution field is ΔB, and nonlinearly centered Hall is
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Both terms are bilinear, and minor changes allow
iteration.
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With Ν being either operator, and the superscript j indicating the time
level at the start of an advance,

linearly implicit newexplicit

To iterate with minimal changes, let ΔXk be the k-th iteration for Xj+1-Xj.
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where L is linear and remaining RHS is R, is equivalent to Newton:

! 

F "Xk#1( ) +
$F

$"X "Xk#1

"Xk # "Xk#1( ) = 0 for

! 

F = L + N " R



Coding changes are minimal.
• Loop around linear solve.

• Reuse original RHS,                      and add                          .

• There are new RHS integrands.

• When performing each matrix-free linear solve, use the last
iterate,                   , in the linearized terms.

• Save        as the guess for the next linear solve.

• Find                      and test for convergence.
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• First test cases do not show significant changes.
• Computational cost is about 15%.

For bilinear Ν,
numerator = norm of
nonlinear residual
(using last Newt. it.)



Other possible developments: two-fluid internal
kink may benefit from 3D linear force operator.

• First case has a 20×20 mesh, degree of polynomials is 8, and 0≤n≤42.
• Second case has a 24×32 mesh, degree of polynomials is 8, and 0≤n≤85.
• The computations limit Δt by nearly 2 orders of magnitude from linearly
accurate Δt before the crash.  Minimum CFL is ~600.

• Time step in nonlinear two-
fluid internal kink
computations has been
limited for accuracy.

• Before the crash, the
evolution is quasi-static, so
the largest truncation error
is likely in the force-balance.



A 3D linear force operator can be used in the matrix-
free velocity operation.

• It will be similar to other 3D operators, except test-function
terms are more complicated.

• After integration by parts, MHD wave terms include
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where B is 3D.

• Dot product in integrand should be done in real space.

• Transform of                     is needed for the three vector
test functions Ar, Az, and Aφ.
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Conclusions

• Newton-Krylov iteration for the implicit leapfrog is
practical and has been implemented.

• More testing is needed to evaluate its importance.

• A 3D linear ideal MHD force operator is being
considered.


